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Anomalous modes are flows in the Taylor experiment that exist only for sufficiently 
high Reynolds number R and are always distinct from the primary flow produced 
by gradually increasing R from small values. They are distinguished from all other 
secondary modes by having a direction of spiralling of one or both of the end cells 
such that outward flow is found along the stationary endwall. In this paper we present 
new observations of these flows and compare them with numerical solutions of the 
Navier-Stokes equations. A numerical technique for calculating anomalous modes 
is described and stability curves for 2-, 3-, and 4-cell flows are presented. Streamline 
plots of the numerical solutions are compared with photographs of the observed flows. 
The agreement between the calculations and experiments is good. The calculations 
also confirm certain theoretical predictions made by Benjamin (1978), Benjamin & 
Mullin (1981) and Hall (1982). 

1. Introduction 
The aim of the present numerical and experimental investigation is to extend our 

knowledge of the role of finite-length effects in rotary Taylor-Couette flow. To this 
end, we have studied a class of steady flows which exist at  sufficiently high values 
of the Reynolds number R. They have been called ‘anomalous modes’ by Benjamin 
(1978) and have been studied in detail for a range of parameters by Benjamin (1978) 
and Benjamin & Mullin (1981). 

The flows under consideration are generated in an apparatus with a rotating inner 
cylinder and a concentric stationary outer cylinder with stationary endwalls. Under 
these conditions, the cellular flow which is evolved by continuous increase in speed 
of the inner cylinder from rest consists of an even number of cells. The direction of 
spiralling of the end cells is such that the flow is inwards on the endwall, which is 
consistent with the fact that the centrifugal force is reduced owing to the no-slip 
condition applying to the azimuthal component of velocity. A flow formed in this 
way is defined to be the primary mode and it is uniquely prescribed for a given length 
of the apparatus. The mutation of the primary flow, as the length of the flow domain 
is changed, is now well understood, e.g. see Mullin (1982) and Cliffe (1984) for 
complementary experimental and numerical studies. 

In  addition to the above flows, other flows with direction of spiralling of the end 
cells in the opposite sense were first discovered by Benjamin (1978). He found that 
either one or both end cells rotated such that outward flow is found along the fixed 
endwall, so that one may observe an array of cells of either odd or even number. These 
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flows are all disconnected from the primary flow except for the special case of a single 
cell M found by Benjamin & Mullin (1981) and subsequently studied numerically by 
Cliffe (1983). Therefore, the anomalous modes cannot survive below a critical value 
of R which depends upon the aspect ratio. It is an unusual fact that these modes have 
apparently gone undetected by other researchers in this field but this may be due 
to the fact that their domain of existence is far removed from that of the normal 
steady Taylor cells. 

Benjamin t Mullin (1981) also gave a theoretical account of the anomalous modes 
based on a model, for boundary effects in Taylor-Couette flow, which was proposed 
by Schaeffer (1980). Schaeffer’s model has also been studied in a quantitative manner 
by Hall (1980, 1982). We shall review the Schaeffer model and its application to the 
anomalous modes in $2. An interesting feature of the anomalous modes is that away 
from the ends of the annulus the flow resembles a normal mode in that the cells are 
approximately periodically spaced and of the same size as their normal counterparts. 
However, the critical Reynolds number above which they are possible is a t  least twice 
that for onset of Taylor vortices according to the periodic- or infinite-cylinder model. 
The stability of the entire flow is governed by the stability of the end cell or cells, 
emphasizing the fact that these flows are not small perturbations of the flows 
originating in the periodic model. Consequently we believe that numerical techniques 
are the only available means of obtaining quantitative comparison between theory 
and experiment. 

Although we only consider relatively short cylinders here, complementary experi- 
mental studies by Benjamin t Mullin (1982) and Lorenzen & Mullin (1984) indicate 
that the properties of anomalous modes are similar over a wide range of cylinder 
lengths. Lorenzen & Mullin (1984) studied the stability of the anomalous 40-cell mode 
and found results very similar to those presented here. We should further note that 
similar even- and odd-cell anomalous modes have been observed by Mullin & 
Lorenzen (1984) in their experiment on the flow in the gap between a square-sectioned 
stationary outer cylinder and a rotating circular cylinder. In  addition, an even-cell 
anomalous mode has been observed in Taylodouette flow with asymmetric end 
boundaries by Mullin, Cliffe & Benjamin (1984). Also, for the buoyancy-driven flow 
in a tilted cavity Cliffe & Winters (1984) calculated convective flows which are 
analogous to the anomalous modes of the Taylor experiment. 

The purpose of the present paper is to present numerical calculations of anomalous 
modes which will be compared with new experimental observations. We shall 
compare computed and measured stability curves and also computed streamline plots 
with photographs of the anomalous modes. The numerical methods are similar to 
those used to investigate 2-cell and single-cell flows (Cliffe 1983) and the primary flow 
exchange process (Cliffe 1984). Continuation methods and methods for bifurcation 
problems are applied to a finite-element discretization of the Naviedtokes equations. 
Since the anomalous modes are not continuously connected to the primary flow their 
generation is not entirely straightforward. We shall present a technique by which any 
anomalous mode may be systematically calculated. This will be described in detail 
in §3 after the basic numerical methods have been summarized. 

The experimental procedure we used is similar to  that of Benjamin t Mullin (1981) 
and it will be described in $ 4. In  $5 we shall present our results including a comparison 
between the calculations and experimental data. Finally, in $6 we shall draw some 
conclusions and emphasize the important and necessary role the anomalous modes 
play in Taylor-Couette flow. 
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FIGURE 1. Representation of the complete solution set for successive supercritical bifurcations. 

2. Schaeffer’s model 
A detailed discussion of the application of Schaeffer’s model to the problem of 

anomalous modes in the Taylor experiment has already been given by Benjamin & 
Mullin (1981) and Hall (1982). We shall briefly review this work and refer the reader 
to Schaeffer’s (1980) original paper and the above references for details. Schaeffer’s 
idea was to introduce a parameter 7 E [0,1] into the problem in such a way that when 
7 = 0 one has the well-known periodic problem and when 7 = 1 one has the realistic 
case of stationary ends. He did this by applying the following boundary conditions 
to the region { ( r ,  z )  I rl < r < rz, -+Z < z < 40, 

where F(r)  is a smooth function satisfying P(rJ = 1 and F(r) = 0 for r 2 rl + 6, with 
0 < 8 < r2-rl. This function is introduced so that the solutions of the realistic 
problem have a finite rate of dissipation of energy (see Benjamin & Mullin 1981 pp. 
224, 225). The case 7 = 0 corresponds to the periodic problem for which a great deal 
of analytical information is available. Schcteffer analysed this problem close to the 
point where two different modes become unstable at the same value of Reynolds 
number, and allowed for the effects of non-zero 7 using the methods of singularity 
theory. The relevant case here is where the two modes have N and N + l  cells 
respectively. Schaeffer only treated the interaction between modes having an even 
number of cells; the present treatment is due to Benjamin & Mullin (1981). The 
solution set for this case is illustrated in figure 1. The N-cell solution bifurcates from 
the trivial (Couette flow) solution at R, and the (N+ 1)-cell solution bifurcates a t  
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FIGURE 2. Perturbed bifurcation diagram illustrating the anomalous modes (cf. figure 1 ) .  

RN+l. The (N+ 1)-cell branch suffers secondary bifurcations which are associated with 
the multiple eigenvalue that occurs when 1 is chosen to make R, and RN+l equal 
(Bauer, Keller & Reiss 1975; Shearer 1980). The ( N +  1)-cell branch is stable for R 
greater than the value at which the secondary bifurcation occurs. If N is odd then 
fi is a measure of the symmetric component of the solution and fi measures the 
antisymmetric component. The effect of non-zero T is to  split the bifurcation at RN+l,  
but, because of the symmetry, the other bifurcations are not split. The situation for 
small 7 is shown in figure 2. It is now clear where the even, ( N +  1)-cell anomalous 
mode comes from. The branch above the bifurcation a t  C is a perturbation of the 
( N +  1)-cell flow in the periodic problem with flow outwards near the planes z = +$. 
Note that in the periodic problem the two (N+ 1)-cell bifurcating branches have, 
alternatively, flow inwards and outwards near the ends. The branch with flow inwards 
becomes the primary branch as T tends to  one. Figure 2 also illustrates the possibility 
that the anomalous modes with an even number of cells may lose stability, not at 
a limit point, but a t  a supercritical symmetry-breaking bifurcation such as point C. 
The Leray-Schauder indices are indicated on this diagram and it is clear that, when 
the Reynolds number is reduced below that corresponding to  C, all the nearby 
solutions have index - 1 and are therefore unstable. We shall return to this point 
in $5. 

The anomalous mode with N-cells bifurcates from the primary branch for small 
values of T .  However, Benjamin & Mullin (1981) argued that, except for the single-cell 
flows at very small aspect ratio, the anomalous modes with an odd number of cells 
would decouple from the primary branch via the process shown in figure 3; the 
quantitative study by Hall (1982) supports this conclusion. The bifurcation a t  A 
becomes subcritical and eventually coalesces with the secondary bifurcation at B to 
produce a pair of anomalous modes with an  odd number of cells. 

We conclude this section by emphasizing that, in the context of Schaeffer’s model, 
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FIGURE 3. Changes in the bifurcation diagram for the anomalous modes having an odd number 
of cells (excluding the cam with 1-cell) as the parameter T increases from 0 to 1. 

the anomalous modes are far from surprising; indeed they are to be expected. What 
is surprising is that they were apparently undetected until Benjamin’s experiments 
in the seventies. 

3. Numerical methods 
In  this section we shall briefly summarize the numerical methods we have used. 

They are similar to those in Cliffe (1983, 1984) and Cliffe & Winters (1984). Let rl 
and r2 be the radii of the inner and outer cylinder respectively and let E be their length. 
Let 52 be the angular speed of the inner cylinder, the outer cylinder being taken to 
be stationary. In  cylindrical polar coordinates (T*,  4, z*)  with origin midway between 
the ends of the annulus and velocity U* E (u:,u$,u:), the equations for steady 
axisymmetric flow of a viscous fluid are: 
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In the above equations r ,  2, U and p are given by 

r = - - p ,  r* z = -  z* u=-,  U* p = -  dP* 
d 1 ’  rl Q P l  0’ 

where d = r2-r l ,  /3 = r l / d  = q / ( l - q )  and q is the radius ratio. The aspect ratio 
r = l /d  and the Reynolds number R = pr ,  SZd/p, where p and p are the fluid density 
and viscosity respectively. 

Equations (3.1)-(3.4) hold in the region 

D = { ( r , z ) IO < r < 1, -0.5 < z < 0.5). (3.5) 

The boundary conditions are that u, and u, are zero on the inner and outer cylinder, 
u9 is 0 on the outer cylinder and 1 on the inner cylinder and we apply Schaeffer’s 
conditions (2.1) on the ends of the annulus. 

Equations (3.1)-(3.4) are discretized by the finite-element method. Details of this 
method are given in Cliffe (1983) and Cliffe & Spence (1984). We mention that we 
used nine-node quadrilateral elements ; on each element the components of velocity 
are approximated by biquadratic polynomials and the pressure is approximated by 
piecewise linear functions which are not, in general, continuous across element 
boundaries (Cliffe, Jackson & Greenfield 1982; Engleman et al. 1982). 

The finite-element equations may be written in the form (Cliffe & Spence 1984), 

AX, R, r, = 0, ~ : X X  R x R x R+X (3.6) 

where x is a vector containing all the velocity and pressure degrees of freedom. The 
space Xis the set of all possible x and is equivalent to RN where N is the total number 
of degrees of freedom in the problem. The f in (3.6) has an important symmetry 
property which reflects the fact that the Navier-Stokes equations are invariant under 
reflection about the mid-plane of the annulus. It can be shown (Cliffe & Spence 1984) 
that, provided the mesh is symmetric, there exists a linear mapping S from X to X 
such that 

S 9  I, S2 = I  and fl#x,R,r,7) = S f l x , R , r , ~ ) ,  X E X ,  R,r,TE[O,l]. (3.7) 

We used the Keller arclength-continuation method to calculate individual solution 
branches (Keller 1977). The stability limit of the anomalous modes corresponds to 
either a simple-limit point or a symmetry-breaking bifurcation point. We calculated 
paths of limit points by applying Keller arclength continuation to the following 
extended system of equations (Moore & Spence 1980 ; Jepson & Spence 1984) : 

f l x ,  R,  r, 1) 

withy= ( x , # , R ) , + ~ X a n d I ~ X ’ ( t h e d u a l o f X ) .  
The mapping S in (3.7) induces a natural decomposition of X into 

X =  x,+x,, (3.9) 

where X, = ( X E X J S X  = x}, X, = { X € X I S X  = -x}, (3.10) 

consist of symmetric and antisymmetric elements of X respectively. The paths of 
svmmetry-breaking bifurcation points, which occur for the anomalous modes with 
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an even number of cells, were calculated by applying Keller arclength continuation 
to the following extended system (Werner k Spence 1984): 

A x , R , r :  1 )  Y = ( X , d , R ) E  y, 

F ( y , T ,  1 )  = f , (x ,R,T,  l ) +  = 0, Y = x, x x,x R, (3.11) 

L I  I F :  Y x  88 x R+ Y. 

Note that (3.11) is similar to (3.8) but that the solution x is restricted to be a 
symmetric vector, whereas the eigenvector # must be antisymmetric. 

We now describe the procedure for generating the anomalous modes for the realistic 
problem with no-slip boundary conditions on the ends of the annulus. To generate 
an N-cell anomalous mode the first bifurcation in the problem with 7 = 0 and r = N 
was calculated by monitoring the sign of the determinant of the Jacobian matrix, 
f,, along the Couette flow branch as the Reynolds number was increased. A change 
in sign between two values of R indicates the presence of bifurcation. The bifurcating 
branch, which has N cells, was then followed using the eigenvector at the bifurcation 
point to construct an initial guess for continuation along the bifurcating branch. In  
the case of an even number of cells the branch with flow outwards near the ends was 
chosen; in the odd case either branch will do. The N-cell branch was followed out 
to a Reynolds number of 300. A t  this point R and r were fixed at 300 and N 
respectively and Keller continuation was applied to the parameter 7,  which was then 
changed from 0 to 1 .  The solution with 7 = 1 and R = 300, T = N is then the required 
anomalous mode for the realistic problem. By this means we found it possible to 
produce 2-, 3-,  4-, 5-cell anomalous modes. 

We should note that the numerical technique used here does not guarantee that 
the solutions are stable to all types of perturbation. For example, at present, we have 
no economical means of detecting the presence of a Hopf bifurcation, and no test of 
stability to non-axisymmetric disturbances has been made. 

It is interesting to note that the behaviour of the solution as 7 is increased towards 
1 is highly nonlinear. In  fact the velocities at the ends of the annulus show very little 
change until 7 is greater than about 0.95. This behaviour is another indication that 
perturbation methods may not be appropriate for this problem. 

The region D was covered by a mesh of quadrilateral elements which were uniform 
in the r- and z-directions except near the corners where the inner cylinder meets the 
ends, where local refinement was used (see Cliffe 1983, 1984). For calculations of the 
modes with an even number of cells only half the region D need be discretized (Cliffe 
t Spence 1984) whereas for modes with an odd number of cells we had to treat the 
whole of D. The meshes for the full region may be characterized by the triple 
(NR,  N Z ,  NC)  where N R  and NZ are the numbers of elements in r- and z-directions 
respectively and the mesh has 2NC- 1 elements in each corner. A mesh for one half 
of the region D will be denoted by (NR,  N Z ,  NC, 8) and is essentially equivalent to that 
part of a ( N R ,  2NZ, NC)  mesh with z < 0. The total number of degrees of freedom on a 
(NR,  N Z ,  NC)  mesh is 3(2NR + 1 )  (2NZ+ 1 ) + 60(NC- 1) + 3NR, NZ+ 6(NC- 1 )  and 
on a ( N R , N Z , N C , S )  mesh is 3(2NR+1)(2NZ+1)+3O(NC-l)+3NR,NZ+ 
6(NC-  1). As in our previous work on the Taylor problem (Cliffe 1983,1984) we found 
that the results were insensitive to the value of NC provided it was greater than 4.  
Most of the calculations were done with N R  equal to 10 and NZ equal to N R  times 
the integer nearest r. Calculations a t  a few points were done on h e r  meshes as a 
check on accuracy. 
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4. Experimental procedure 
The apparatus used in the experiments is virtually the same as was used by Mullin 

(1982) and interested readers are referred there for further details. The outer glass 
cylinder has a precision bore of 63.5k0.04 mm and the inner cylinder is made of 
machined stainless steel and has a diameter of 38.10 & 0.02 mm giving a radius ratio 
of 0.6. The end conditions are symmetrk, being provided by two identically machined 
PTFE collars. It should be noted here that the presence or absence of the bottom 
collar makes no detectable difference to the results obtained. The photographs were 
taken with the collar in place to reassure the reader that the observed asymmetric 
flows are not artefacts of the boundary condition. 

The top PTFE collar can be moved vertically in a controlled way by means of a 
micrometer attachment so that accurate measurements of the aspect ratio can be 
made and calibrated against an external travelling telescope. The inner cylinder is 
driven round with a stepping motor system with an accuracy of better than 0.1 % 
and the temperature of the fluid controlled to within 0.1 "C. 

The flow is visualized by adding a small amount of Mearlmaid AA natural 
pearlessence and illuminated from the side by a slit of light - 2 mm wide obtained 
from a 150 W slide projector outside the temperature control cabinet. The photo- 
graphs were taken from a position at  right angles to the plane of illumination using 
Kodak Techni-Pan film. The exposure time for each photograph was 8 s at  f no. 32 
using an 80 mm macro-lens with bellows. 

Earlier experiments on anomalous modes by Benjamin & Mullin (1981) were 
performed using different apparatus. In this case the outer stationary cylinder was 
made of a selected piece of Perspex tubing. Unfortunately, this appears to have 
become distorted over a period of time and this may help to explain the quantitative 
discrepancy between the present results and those obtained previously ; the qualitative 
nature of the results is unaffected by this distortion. The earlier results are 
consistently 30 % lower in the estimate for critical speeds for collapse of the anomalous 
modes, except for the single-cell results, which bear good comparison with the 
numerical work of Cliffe (1983). This may also explain the difference between the 
numerical and experimental results for the 2 4  cell exchange investigated by 
Benjamin (1978) and Cliffe (1984). The results there are qualitatively correct but 
again the experimental points lie below the numerical ones. 

The method of generation of the anomalous modes is the same as reported by 
Benjamin (1978). The apparatus is switched from rest to a final speed in a range above 
approximately four times that for the first appearance of cells. A range of final speeds 
is swept out by repeating the process many times and in this way narrow bands are 
located where anomalous modes can be created repeatedly. Indeed, a pertinent 
observation is that the anomalous mode is established very rapidly after switch-on 
with the central cells establishing themselves first and determining the direction of 
rotation of the end cells. The final speed values used have been found to be different 
for each apparatus used and are presumably a function of the inertia of the system. 
However, with practice, any desired anomalous mode may be generated to order over 
a reasonably large range of aspect ratios. 

5. Results 
Figure 4 shows the numerically calculated stability curves for the 2-, 3-, 4-cell 

anomalous modes for radius ratio 0.615, which corresponds to the experiments of 
Benjamin & Mullin (1981). The solid line indicates a path of limit points and the 
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FIGURE 4. Critical loci for 2-, 3- and 4-cell anomalous modes with radius ratio 0.615: -, 
numerically calculated fold curve ; ---. numerically calculated path of symmetry-breaking 
bifurcation points. 

dashed line a path of symmetry-breaking bifurcation points (only for the modes with 
an even number of cells). For aspect ratios lower than that corresponding to A the 
path of symmetry-breaking bifurcation points lies on the unstable part of the 
symmetric solution surface whereas it lies on the stable side for aspect ratios greater 
than A. Thus the 2-cell flow becomes unstable due to antisymmetric disturbances 
when r is greater than 2.2. For the 4-cell modes the path of symmetry-breaking 
bifurcation points lies on the unstable part of the symmetric solution surface only 
between B and C. Thus, over most of the range of aspect ratios the 4-cell collapses 
due to antisymmetric disturbances. Note also that the limit point and symmetry- 
breaking point appear always to occur at similar values of the Reynolds number as 
indicated by the closeness of the solid and dotted lines. 

The qualitative nature of figure 4 is very similar to that found experimentally by 
Benjamin & Mullin (1981). However, the critical Reynolds numbers are about 30 yo 
higher than those Benjamin & Mullin found. We believe this is due to the imperfections 
in that apparatus which were discussed in $4. We have not shown the stability curve 
for the anomalous 5-cell mode since it is more complex than the others. A considerable 
amount of work will be required to investigate this case properly and i t  is presently 
in progress. 

Figure 5 shows a comparison of the numerically calculated stability curve and the 
new experimental data for the 4-cell mode with radius ratio 0.6. Again, in the region 
between A and B the symmetry-breaking bifurcation points lie on the unstable part 
of the symmetric solution surface. The experimental points should, therefore, be 
compared with the dashed curve except between A and B where they should be 
compared with the solid curve. Tables 1 and 2 indicate mesh refinement tests done 
at the extremes of this stability curve. From this we conclude that the errors in the 
numerically calculated curves are less than 1 Yo. The agreement between the theory 
and experiment is clearly good. 

In figures 6, 7 and 8 we give a comparison between the computed streamline plots 
9 V L X  153 



252 K .  A .  Cliffe and T. Mullin 

+; 

1 I I 

3 4 5 
Aspect ratio 

FIQURE 5. Critical loci for the 4-cell anomalous mode with radius ratio 0.6: +, experiment; -, 
numerically calculated fold curve ; ---, numerically calculated path of symmetry-breaking 
bifurcation points. 

Critical R at Critical R at 
Mesh aspect ratio 2.87 aspect ratio 5.27 

10,20,5, s 283.85 
15,30,5, S 282.48 
20,40,5, S 282.20 

266.53 
266.22 
266.11 

TABLE 1 .  Effect of mesh refinement on the critical Reynolds numbers at the limit points at the 
two extremes of the fold curve shown in figure 5 

Critical R at  Critical R at 
Mesh aspect ratio 2.87 aspect ratio 5.27 

10,20,5, s 300.1 1 267.16 
15,30,5, S 298.71 266.80 
20,40,5,S 298.43 266.70 

TABLE 2. Effect of mesh refinement on the critical Reynolds numbers at  the symmetry-breaking 
bifurcation points at the two extremes of the path of such points shown in figure 5 
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FIGURE 6. Photograph (a), and streamline plot ot' numerical solution ( b ) ,  for 7 = 0.6, f =  4.0, 
R = 300 for the 3-cell anomalous mode. Contours of the stream function are plotted at intervals 
of 0.01 except for the small vortex in the corner where the interval is 0.002. The inner cylinder 
is at the right hand side. 

9-2 
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FIQURE 7. Photograph (a), and streamline plot of numerical solution ( b ) ,  for 7 = 0.6, r = 4.0, 
R = 300 for the 4-cell anomalous mode. Contours of the streamfunction are plotted at intervals 
of 0.01 except for the small vortex in the corners where the interval is 0.002. The inner cylinder 
is at the right-hand side. 
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FIQTJRE 8. Photograph (a), and streamline plot of numerical solution ( b ) ,  for 11 = 0.0, r = 4.0, 
R = 300 for the 5-cell anomalous mode. Contours of the streamfunction are plotted at intervals 
of 0.01 except for the small vortex in the corner where the interval is 0.002. The inner cylinder 
is at the right-hand side. 
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FIGURE 9. Enlarged photograph (a), and streamline plot of numerical solution (b), for 7 = 0.6, 
r = 4.0, R = 300 for the 4-cell anomalous mode showing the small vortex in the corner between 
the inner, rotating cylinder and the stationary end. Contours of the stream function are plotted at 
intervals of 0.01 except for the small vortex in the corner where the interval is 0.001. The inner 
cylinder is at  the right-hand side. 

and cross-sectional photographs of the 3-, 4-, and 5-cell anomalous modes. The aspect 
ratio is 4.0 and R = 300 for each case. A striking feature of anomalous modes, 
particularly those with a larger number of cells, is the distortion of the cell boundary 
adjacent to the anomalous cell. This can be seen clearly in the &cell example. 

A more obvious feature is the recirculation at  the inner corner adjacent to the 
rotating wall. This feature is shown in enlarged form for the anomalous and normal 
4-cell flows in figures 9 and 10. In both cases R = 300 and r = 4 and we have displayed 
only half of the symmetric flows. The striking agreement between these and the other 
photographs and streamline plots is evident. 

6. Conclusions 
We have presented new experimental results on anomalous modes in the Taylor 

experiment and compared them with numerical solutions of the Navier-Stokes 
equations. The computed streamline patterns show good agreement with photographs 
of the flows and the numerically determined stability curves for the 4-cell anomalous 
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FIQURE 10. Enlarged photograph (a), and streamline plot of numerical solution (b ) ,  for 7 = 0.6, 
r = 4.0, R = 300 for the normal 4-cell flow (cf. figure 9). Contours of the streamfunction are plotted 
at intervals of 0.01. The inner cylinder is at the right-hand side. 

mode is in good quantitative agreement with the experimental curve. These results 
confirm the general conclusions reached by Benjamin (1978) and Benjamin &, Mullin 
(1981) in earlier studies. 

We wish to emphasize that, in the light of Schaeffer’s (1980) model, the anomalous 
modes are not at all surprising, indeed they are to be expected. They are due to the 
ends ofthe annulus and are an essential feature of the Taylor experiment with realistic 
end conditions. 

We would like to thank Mr C. W. Band of the photographic group of the Physics 
department at Oxford for his help with the photography and Mr A. C. Greenfield for 
help with the computing. 
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